留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2液相及气相下铝酸盐水泥石强度发展规律

范白涛 武治强 张党生

范白涛,武治强,张党生. CO2液相及气相下铝酸盐水泥石强度发展规律[J]. 钻井液与完井液,2022,39(1):59-64 doi: 10.12358/j.issn.1001-5620.2022.01.010
引用本文: 范白涛,武治强,张党生. CO2液相及气相下铝酸盐水泥石强度发展规律[J]. 钻井液与完井液,2022,39(1):59-64 doi: 10.12358/j.issn.1001-5620.2022.01.010
FAN Baitao, WU Zhiqiang, ZHANG Dangsheng.Development of strength of set aluminate cement in liquid and gaseous CO2 environment[J]. Drilling Fluid & Completion Fluid,2022, 39(1):59-64 doi: 10.12358/j.issn.1001-5620.2022.01.010
Citation: FAN Baitao, WU Zhiqiang, ZHANG Dangsheng.Development of strength of set aluminate cement in liquid and gaseous CO2 environment[J]. Drilling Fluid & Completion Fluid,2022, 39(1):59-64 doi: 10.12358/j.issn.1001-5620.2022.01.010

CO2液相及气相下铝酸盐水泥石强度发展规律

doi: 10.12358/j.issn.1001-5620.2022.01.010
基金项目: 中海油项目“渤中25-1S油田5井区及沙三段低渗开发可行性研究”(2021FS-02)部分研究成果
详细信息
    作者简介:

    范白涛,博士,教授级高级工程师,中国海洋石油集团有限公司钻完井专家,主要从事钻完井技术研究与管理工作。电话 (010)84525455;E-mail:fanbt@cnooc.com.cn

  • 中图分类号: TE256.9

Development of Strength of Set Aluminate Cement in Liquid and Gaseous CO2 Environment

  • 摘要: 火烧油层工况下,固井水泥石服役温度高达500 ℃以上。硅酸盐水泥难以在此温度范围下稳定存在,同时井内伴生大量腐蚀性气体。因此,研究了矿渣改性铝酸盐水泥(CAC)力学性能的可行性,同时模拟火烧油层实际工况,探究了改性铝酸盐水泥石强度发展规律。采用X射线衍射仪、扫描电子显微镜等测试了腐蚀前后改性铝酸盐水泥石的物相组成和微观形貌特征,分析了模拟火烧油层工况下改性铝酸盐水泥石的强度发展规律。结果表明,随着矿渣掺量的增加铝酸盐水泥石抗压强度出现先增加后降低的趋势,且当矿渣掺量为30%左右时其改性效果较好。在50 ℃液相环境下,水泥石被腐蚀产生碳酸钙并产生了孔洞和微裂纹,破坏了水泥石的完整性造成抗压强度降低;而在高温气相环境下,二氧化碳未对水泥石产生腐蚀破坏。在高温下改性CAC水泥石仍可保持较高的抗压强度,并且经过二次高温养护后改性CAC水泥石强度进一步得到发展,具有较好的耐高温性能。该研究为火烧油层工况下CAC水泥石力学性能优化和耐CO2腐蚀提供了一定的理论基础。

     

  • 图  1  矿渣对CAC水泥石抗压强度的影响

    图  2  不同温度下CAC水泥石腐蚀前后的抗压强度

    图  3  腐蚀前后CAC水泥石XRD图谱

    图  4  CO2液相环境下CAC水泥石腐蚀前后微观形貌

    图  5  CO2气相环境中水泥石腐蚀前后微观形貌

    表  1  铝酸盐水泥CAC的化学组成

    %
    ρ/(g·cm−3Al2O3CaOSiO2Fe2O3R2O其他
    3.1050~5930~454~61~20.2~0.61.5
    下载: 导出CSV

    表  2  矿渣的化学组成

    %
    SiO2CaOMgOAl2O3TiO2K2ONa2OFe2O3S
    36.0934.279.939.752.920.870.640.420.40
    下载: 导出CSV

    表  3  水泥浆体配方

    配方水灰比水泥/
    %
    分散剂/
    %
    降失水剂/
    %
    缓凝剂/
    %
    消泡剂/
    %
    矿渣/
    %
    1#0.441000.510.250.020
    2#0.441000.510.250.0210
    3#0.441000.510.250.0220
    4#0.441000.510.250.0230
    5#0.441000.510.250.0240
    下载: 导出CSV
  • [1] CHENG X, DONG Q, MA Y, et al. Mechanical and thermal properties of aluminate cement paste with blast furnace slag at high temperatures[J]. Construction and Building Materials, 2019, 228:116747. doi: 10.1016/j.conbuildmat.2019.116747
    [2] SUYAN K M, DASGUPTA D, GARG S P, et al. Novel cement composition for completion of thermal recovery (ISC) wellbores[C]//SPE/IADC INDIAN Drilling Technology Conference and Exhibition 2006 - Drilling in India: Challenges and Opportunities, 2006.
    [3] VAFAEI M, ALLAHVERDI A, DONG P, et al. Acid attack on geopolymer cement mortar based on waste-glass powder and calcium aluminate cement at mild concentration[J]. Construction and Building Materials, 2018, 193:363-372. doi: 10.1016/j.conbuildmat.2018.10.203
    [4] 王卫仑,李仕群,邢峰,等. 磷铝酸盐水泥浆体抗碳化性能的研究[J]. 建筑材料学报,2012,15(3):334-339. doi: 10.3969/j.issn.1007-9629.2012.03.008

    WANG Weilun, LI Shiqun, XING Feng, et al. Behaviors of carbonation resistance of phosphoaluminate cement pastes[J]. Journal of Building Materials, 2012, 15(3):334-339. doi: 10.3969/j.issn.1007-9629.2012.03.008
    [5] 李仕群, 胡佳山, 刘飚, 等. 掺磷铝酸盐水泥的矿渣硅酸盐水泥水化行为[J]. 建筑材料学报, 2001, 4(1): 22-27.

    LI Shiqun, HU Jiashan, LIU Biao, et al. Hydration behavior of slag portland cement under the action of novel phosphoaluminate cement[J]. Journal of Building Materials, 2001, 4(1): 22-27.
    [6] 袁正夏. 矿物掺合料对铝酸盐水泥水化性能的影响研究[D]. 武汉科技大学, 2019.

    YUAN Zhengxia. Study on the influence of mineral admixtures on the hydration performance of aluminate cement[D]. Wuhan University of Science and Technology, 2019.
    [7] 马聪,步玉环,赵邵彪,等. 固井用铝酸盐水泥改性试验研究[J]. 建筑材料学报,2015,18(1):100-106. doi: 10.3969/j.issn.1007-9629.2015.01.018

    MA Cong, BU Yuhuan, ZHAO Shaobiao, et al. Experimental study on modification of aluminate cement for cementing[J]. Journal of Building Materials, 2015, 18(1):100-106. doi: 10.3969/j.issn.1007-9629.2015.01.018
    [8] 胡曙光,李悦,丁庆军. 石灰石混合材料改善高铝水泥后期强度的研究[J]. 建筑材料学报,1998(1):51-55.

    HU Shuguang, LI Yue, DING Qingjun. Research on limestone admixture to improve the late strength of high alumina cement[J]. Journal of Building Materials, 1998(1):51-55.
    [9] 李早元,伍鹏,程小伟,等. 矿渣对铝酸盐水泥石性能影响的研究[J]. 硅酸盐通报,2014,33(12):3338-3342.

    LI Zaoyuan, WU Peng, CHENG Xiaowei, et al. Influence study on the performance of aluminate cement with slag[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(12):3338-3342.
    [10] LI G, ZHANG A, SONG Z, et al. Study on the resistance to seawater corrosion of the cementitious systems containing ordinary Portland cement or/and calcium aluminate cement[J]. Construction and Building Materials, 2017, 157:852-859. doi: 10.1016/j.conbuildmat.2017.09.175
    [11] PARK S M, JANG J G, SON H M, et al. Stable conversion of metastable hydrates in calcium aluminate cement by early carbonation curing[J]. Journal of CO2 Utilization, 2017, 21:224-226. doi: 10.1016/j.jcou.2017.07.002
    [12] 袁正夏,廖宜顺,沈晴,等. 大掺量矿物掺合料对铝酸盐水泥浆体性能的影响[J]. 混凝土与水泥制品,2019(5):26-30.

    YUAN Zhengxia, LIAO Yishun, SHEN Qing, et al. The effect of high-volume mineral admixtures on the properties of aluminate cement paste[J]. China Concrete and Cement Products, 2019(5):26-30.
    [13] MOSTAFA N Y, ZAKI Z I, ABD ELKADER O H. Chemical activation of calcium aluminate cement composites cured at elevated temperature[J]. Cement and Concrete Composites, 2012, 34(10):1187-1193. doi: 10.1016/j.cemconcomp.2012.08.002
    [14] MIDGLEY H G. Quantitative determination of phases in high alumina cement clinkers by X-ray diffraction[J]. Cement and Concrete Research, 1976, 1(6):217-224.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  487
  • HTML全文浏览量:  254
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-22
  • 修回日期:  2021-11-28
  • 录用日期:  2021-10-22
  • 刊出日期:  2022-05-06

目录

    /

    返回文章
    返回