留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于含硅类增稠剂的新型超临界CO2压裂液的流变特性及岩心伤害评价

许柳 付美龙 黄倩 王杰 赵众从

许柳, 付美龙, 黄倩, 王杰, 赵众从. 基于含硅类增稠剂的新型超临界CO2压裂液的流变特性及岩心伤害评价[J]. 钻井液与完井液, 2020, 37(2): 250-256. doi: 10.3969/j.issn.1001-5620.2020.02.020
引用本文: 许柳, 付美龙, 黄倩, 王杰, 赵众从. 基于含硅类增稠剂的新型超临界CO2压裂液的流变特性及岩心伤害评价[J]. 钻井液与完井液, 2020, 37(2): 250-256. doi: 10.3969/j.issn.1001-5620.2020.02.020
XU Liu, FU Meilong, HUANG Qian, WANG Jie, ZHAO Zhongcong. A New Supercritical CO2 Fracturing Fluid Containing Silicon Thickener: It's Rheological Property and Core Damage Evaluation[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 250-256. doi: 10.3969/j.issn.1001-5620.2020.02.020
Citation: XU Liu, FU Meilong, HUANG Qian, WANG Jie, ZHAO Zhongcong. A New Supercritical CO2 Fracturing Fluid Containing Silicon Thickener: It's Rheological Property and Core Damage Evaluation[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 250-256. doi: 10.3969/j.issn.1001-5620.2020.02.020

基于含硅类增稠剂的新型超临界CO2压裂液的流变特性及岩心伤害评价

doi: 10.3969/j.issn.1001-5620.2020.02.020
基金项目: 

国家自然科学基金资助项目“超临界二氧化碳泡沫压裂液流变行为与摩阻特性研究”(51604036)

详细信息
    作者简介:

    许柳,长江大学石油与天然气工程专业在读研究生,研究方向为超临界CO2压裂液技术研究。电话18732936158;E-mail:920827113@qq.com

    通讯作者:

    付美龙,教授,1967年生,现从事油田化学及提高采收率技术的教研工作。电话13607210109

  • 中图分类号: TE357.12

A New Supercritical CO2 Fracturing Fluid Containing Silicon Thickener: It's Rheological Property and Core Damage Evaluation

  • 摘要: 针对超临界CO2压裂液黏度低、携砂能力差的应用现状合成了含硅类增稠剂,并研究了超临界CO2压裂液的流变特性及岩心伤害情况,旨在为增稠剂的优选以及现场压裂施工提供参考依据。通过溶液聚合法室内合成了聚甲基倍半硅氧烷PMSQ和聚甲基倍半硅氧烷-醋酸乙烯酯PMSQ-VAc二元共聚物增稠剂,采用红外光谱测试验证了增稠剂样品的主要官能团,运用高压长管管流实验法测试了超临界CO2压裂液的增黏效果及其流变特性,最后评价了超临界CO2压裂液在人造裂缝天然长岩心中的滤失性、岩心伤害率。研究结果表明,随着温度、压力的升高,2种增稠剂的增黏效果均先增大后减小;随着增稠剂注入量的增大,2种CO2压裂液的黏度先增大后减小;在超临界CO2流体中,PMSQ-VAc的增黏效果相对较好,可使其黏度最大达到3.892 mPa·s;在渗透率为0.551 mD的岩心中,PMSQ-VAc与超临界CO2流体混合后压裂液的滤失系数为1.435×10-2 m/min1/2,滤失速度为0.010 m/min,岩心的伤害率为16.33%~25.36%,滤失系数和滤失速度较小,伤害程度属弱。

     

  • [1] 孙宝江, 孙文超. 超临界CO2 增黏机制研究进展及展望[J]. 中国石油大学学报(自然科学版),2015,39(3):76-83. SUN Baojiang, SUN Wenchao. Research progress and prospectives of supercritical CO2 thickening technology[J].Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(3):76-83.
    [2] WANG H Z, LI G S, HE Z G, et al. Analysis of mechanisms of supercritical CO2 fracturing[J]. Yantu Lixue/Rock and Soil Mechanics, 2018, 39(10):3589-3596.
    [3] 白建文, 周然, 邝聃, 等. 二氧化碳干法加砂压裂增黏剂研制[J]. 钻井液与完井液, 2017, 34(6):105-110.

    BAI Jianwen, ZHOU Ran, KUANG Dan, et al. Development of viscosifier used in CO2 fracturing fluid with sand[J].Drilling Fluid & Completion Fluid, 2017, 34(6):105-110.
    [4] MINGYONG D, XIN S, CAILI D, et al. Laboratory experiment on a toluene-polydimethyl silicone thickened supercritical carbon dioxide fracturing fluid[J].Journal of Petroleum Science and Engineering, 2018, 166:369-374.
    [5] 张灵丽. 聚倍半硅氧烷球形颗粒的制备及性能研究[D]. 天津:天津大学, 2015. ZHANG Lingli. Polysilsesquioxane Spherical Particles:Synthesis and Property Studies[D].Tianjin:Tianjin University, 2015.
    [6] 张融. 无水增能二氧化碳压裂液体系的优化及评价研究[D]. 北京:中国石油大学(北京), 2017. ZHANG Rong.Optimization and evaluation research of non-water energy-increased carbon dioxide fracturing fluid system[D].Beijing:China University of Petroleum (Beijing), 2017.
    [7] 韩大伟, 卢祥国, 王婷婷, 等. 人造岩心与天然岩心孔隙结构差异及对驱油剂渗流特性的影响[J]. 油气地质与采收率, 2016, 23(4):82-87.

    HAN Dawei, LU Xiangguo, WANG Tingting, et al. Difference of pore structure between artificial cores and natural cores and its influence on the seepage characteristics of oil displacement agent[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(4):82-87.
    [8] 黄朝, 陈跃平, 胡萍, 等. 聚甲基倍半硅氧烷的合成[J]. 有机硅材料, 2003(2):8-10, 43.

    HUANG Chao, CHEN Yueping, HU Ping. Synthesis of polymethylsesquisiloxane[J]. Silicone Material,2003(2):8-10, 43.
    [9] WANG Weixia,ZHOU Shuai, ZHONG Xin,et al. Polydimethylsiloxane assisted supercritical CO2 foaming behavior of high melt strength polypropylene grafted with styrene[J]. Frontiers of Chemical Science & Engineering, 2016, 10(3):1-9.
    [10] LI Q, WANG Y, OWUSU A B.A modified esterbranched thickener for rheology and wettability during CO 2 fracturing for improved fracturing property[J]. Environmental Science and Pollution Research, 2019, 26(2):1-11.
    [11] 崔伟香, 邱晓惠.100% 液态CO2 增稠压裂液流变性能[J]. 钻井液与完井液, 2016, 33(2):101-105.

    CUI Weixiang, QIU Xiaohui.Rheology of thickened 100%liquid CO2 fracturing fluid[J].Drilling Fluid & Completion Fluid, 2016, 33(2):101-105.
    [12] 李强, 王彦玲, 李庆超, 等. 新型CO2 压裂用增稠剂的增稠性能及机理[J]. 钻井液与完井液,2019,36(1):102-108.

    LI Qiang, WANG Yanling, LI Qingchao, et al. Thickening performance and thickening mechanism of a viscosifier for CO 2 fracturing fluid[J].Drilling Fluid & Completion Fluid, 2019, 36(1):102-108.
    [13] SUN B, SUN W, WANG H, et al. Molecular simulation aided design of copolymer thickeners for supercritical CO2 as non-aqueous fracturing fluid[J]. Journal of CO2 Utilization, 2018, 28:107-116.
    [14] 杨雁兵. 聚合物微发泡流体流变性能的研究[D]. 郑州:郑州大学, 2019. YANG Yanbing.Rheological Properties of Polymer MicroFoaming Fluid[D].Zhengzhou:Zhengzhou University, 2019.
    [15] 曾一芳. 高分子聚合物流变特性研究与应用[D]. 成都:成都理工大学, 2018. ZENG Yifang.Investigation and application of polymer rheological property[D].Chengdu:Chengdu University of Technology, 2018.
    [16] GU Y, ZHANG S, SHE Y. Effects of polymers as direct CO 2 thickeners on the mutual interactions between a light crude oil and CO2[J]. Journal of Polymer Research, 2013, 20(2):61.
    [17] 杨聪萍, 赵运祥, 郭大立. 压裂液降滤失性能的实验研究[J]. 山东煤炭科技, 2016(2):153-155. YANG Congping, ZHAO Yunxiang, GUO Dali. Experimental study on the property of fracturing fluid loss[J].Shandong Coal Science and Technology, 2016

    (2):153-155.
    [18] 刘真光, 邱正松, 钟汉毅, 等. 页岩储层超临界CO2 压裂液滤失规律实验研究[J]. 钻井液与完井液, 2016, 33(1):113-117.

    LIU Zhenguang, QIU Zhengsong, ZHONG Hanyi, et al. Study on filtration property of hypercritical CO2 fracturing fluid for shale reservoirs[J].Drilling Fluid & Completion Fluid, 2016, 33(1):113-117.
    [19] YANG Li, GUO Jianchun, WANG Shibin.The damage mechanisms of fracturing fluid on production in tight gas reservoirs[J]. Energy Procedia, 2019, 158.
  • 加载中
计量
  • 文章访问数:  553
  • HTML全文浏览量:  152
  • PDF下载量:  241
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-06
  • 刊出日期:  2020-04-28

目录

    /

    返回文章
    返回