留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国外微泡沫钻井液技术新进展及探讨

王超群 陈缘博 赵志强 郭晓轩 张道明

王超群, 陈缘博, 赵志强, 郭晓轩, 张道明. 国外微泡沫钻井液技术新进展及探讨[J]. 钻井液与完井液, 2020, 37(2): 133-139. doi: 10.3969/j.issn.1001-5620.2020.02.001
引用本文: 王超群, 陈缘博, 赵志强, 郭晓轩, 张道明. 国外微泡沫钻井液技术新进展及探讨[J]. 钻井液与完井液, 2020, 37(2): 133-139. doi: 10.3969/j.issn.1001-5620.2020.02.001
WANG Chaoqun, CHEN Yuanbo, ZHAO Zhiqiang, GUO Xiaoxuan, ZHANG Daoming. Micro Foam Drilling Fluid Technology Abroad: New Progress and Discussion[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 133-139. doi: 10.3969/j.issn.1001-5620.2020.02.001
Citation: WANG Chaoqun, CHEN Yuanbo, ZHAO Zhiqiang, GUO Xiaoxuan, ZHANG Daoming. Micro Foam Drilling Fluid Technology Abroad: New Progress and Discussion[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 133-139. doi: 10.3969/j.issn.1001-5620.2020.02.001

国外微泡沫钻井液技术新进展及探讨

doi: 10.3969/j.issn.1001-5620.2020.02.001
详细信息
    作者简介:

    王超群,现在主要从事钻井液技术研究工作。电话13836728117;E-mail:wcq1984000@126.com

  • 中图分类号: TE254.3

Micro Foam Drilling Fluid Technology Abroad: New Progress and Discussion

  • 摘要: 综述了近10年国外微泡沫钻井液技术的研究及应用进展,总结了国外在微泡沫微观机理及其体系流变性能等方面取得的认识。针对目前的技术现状,提出了微泡沫尺寸与地层孔隙喉道半径匹配关系认识不清、微泡沫引起的堵塞、室内评价与现场应用效果差异较大等几方面的问题。在此基础上,分别从微泡沫体系在多孔介质中的渗流规律及影响因素、微泡沫钻井液用化学剂、微泡沫钻井液制备方法3个层面,探讨了该技术的研究方向。即要建立数学模型定量描述微泡沫尺寸与多孔介质中匹配关系,从而为微泡沫在不同储层中的应用提供理论参考;研究微泡沫产生的"贾敏效应"对储层流体渗流能力的影响,避免微泡沫钻井液施工后可能引起的产液量下降问题;建立实验室与现场制备条件的对应关系,统一关于微泡沫钻井液的制备规范或标准。

     

  • [1] GAURINA M E, DIMUREC.Paši-rudarsko-geološkonaftni zbornik.Aphron-based drilling fluids:solution for low pressure reservoirs[J]. Rudarsko-geološko-naftni zbornik, 2009, 21(4):65-72.
    [2] 邓柯, 许期聪, 邓虎, 等. 一种微泡沫基液体系在砂质黄土层雾化钻井中的应用[J]. 钻采工艺, 2012, 35(5):94-97.

    DENG Ke, XU Qicong, DENG Hu, et al. Application of a micro foam based liquid system in sandy clay mist drilling[J]. Drilling and Production Technology, 2012, 35(5):94-97.
    [3] FINK J K, DISPERSIONS, EMULSIONS, et al. Petroleum engineer's guide to oil field chemicals and fluids[M]. Boston:Gulf Professional Publishing, 2012, chapter21:663-694.
    [4] GROWCOCK F B, BELKIN A, FOSDICK M, et al. Recent advances in aphron drilling fluids[J]. SPE Drill Complet, 2007, 22(2):74-80.
    [5] AMIRI M C, WOODBURN E T. A method for the characterization of colloidal gas aphron dispersion[J]. Chem Eng Res Des, 1990, 68(10):154-160.
    [6] IVAN C D, BLAKE L D, QUINTANA J L. Aphronbase drilling fluid:Evolving technologies for lost circulation control[R]. SPE annual technical conference and exhibition. New Orleans, LA, USA:Society of Petroleum Engineers, SPE 67735, 2001.
    [7] GAURINA ME, IMUREC N, PAŠI B. Aphron-based drilling fluids:solution for low pressure reservoirs[J]. Rudarsko Geološko Naftni Zbornik, 2009, 21(5):65-72.
    [8] MATSUSHITA K, MOLLAH A H, STUCKEY D C, et al. Predispersed solvent extraction of dilute products using colloidal gas aphrons and colloidal liquid aphrons:Aphron preparation, stability and size[J]. Colloids and Surfaces, 1992, 69(1):65-72.
    [9] SADEGHIALIABADI H, AMIRI M C. A new stability index for characterizing the colloidal gas aphrons dispersion[J]. Colloids and Surfaces A, 2015(471):170-177.
    [10] AMIRI M C, MOSHKELANI M. Electrical conductivity as a novel technique for characterization of colloidal gas aphrons(CGA)[J]. Colloids and Surfaces A, 2008, 20(317):262-269.
    [11] JAUREGI P, VARLEY J. Colloidal gas aphrons:potential applications in biotechnology trends[J]. Biotechnology, 1999, 17(10):389-395.
    [12] MATSUSHITA K, MOLLAH A H, STUCKEY D C, et al. Predispersed solvent extraction of dilute products using colloidal gas aphrons and colloidal liquid aphrons:aphron preparation, stability and size[J]. Colloids Surf, 1992, 69(2):65-72.
    [13] BELKIN A, IRVING M, O'CONNOR R, et al. How aphron drilling flfluids work. SPE annual technical conference and exhibition[C]//Dallas, Texas, USA:SPE 96145, 2005.
    [14] JAUREGI P, MITCHELL G R, VARLEY J. Colloidal gas aphrons (CGA):dispersion and structural features[J]. Am. Inst. Chem. Eng. J., 2000, 46(10):24-36.
    [15] JAUREGI P, DERMIKI M. Separation of value-added bioproducts by colloidal gas aphrons (CGA) flotation and applications in the recovery of value-added food products. In:Rizvi S, editor[M]. Separation, extraction and concentration processes in the food, beverage and nutraceutical industries. Elsevier, 2010:284-313.
    [16] AMIRI M C, SADEGHIALIABADI H. Evaluating the stability of colloidal gas aphrons in the presence of montmorillonite nanoparticles[J]. Colloids and Surfaces A, 2014, 45(5):212-219.
    [17] FENG W, SINGHAL N, SWIFT S.Drainage mechanism of microbubble dispersion and factors influencing its stability[J]. Colloid Interface Sci, 2009, 337(8):548-554.
    [18] ALIZADEH A, KHAMEHCHI E. Mathematical modeling of the colloidal gas aphron motion through porous medium, including colloidal bubble generation and destruction[J]. Colloid and Polymer Science, 2016, 294(6):1075-1085.
    [19] NAREH M A, SHAHRI M P, ZAMANI M.Preparation and charac terization of colloid gas aphron based drilling flfluids using a plant-based surfactant[R]. SPE 16088, 2012.
    [20] BASU S, MALPANI P R. Removal of methyl orange and methylene blue dye from water using colloidal gas aphron-effect of processes parameter[J]. Sep Sci Technol, 2001, 36(13):2997-3013.
    [21] ROSSEN W R, ZHOU Z H, MAMUN C K. Modeling foam mobility in porous media[J].SPE Advanced Technology Series, 1995, 3(1):146-153.
    [22] ALIZADEH A, KHAMEHCHI E. A Model for predicting size distribution and liquid drainage from micro bubble surfactant multi-layer fluids using population balance[J]. Colloid and Polymer Science,2015,293(12):3419-3427.
    [23] ZITHA P L J, DU D X. A new stochastic bubble population model for foam flow in porous media[J]. Transport in Porous Media, 2010, 83(3):603-621.
    [24] BJORNDALEN N, ALVAREZ J M, JOSSY W E. An experimental study of the pore blocking mechanisms of Aphron drilling fluids using micro models[R].SPE 121417, 2009.
    [25] NBJORNDALE N, JOSE ALVAREZ, EDDIE JOSSY. A study of the effects of colloidal gas aphron composition on pore blocking[R].SPE 121417, 2011.
    [26] ALIZADEH A, KHAMEHCHI E.Mathematical modeling of the colloidal gas aphron motion through porous medium, including colloidal bubble generation and destruction[J]. Colloid and Polymer Science, 2016, 294(6):1075-1085.
    [27] ARABLOO NAREH'EI M, PORDEL SHAHRI M. Preparation and characterization of colloidal gas aphron based drilling fluids using a plant-based surfactant[R].SPE 160888, 2012.
    [28] KHAMEHCHI E, TABIBZADEH S, ALIZADEH A. Rheological properties of Aphron based drilling fluids[J]. Petroleum Exploration and Development, 2016, 43(6):1076-1081.
    [29] MACPHAIL W F, COOPER R C, BROOKEY T, et al. Adopting aphron fluid techno-logy for completion and work over applications[R]. SPE 112439, 2008.
    [30] GENTZIS T, DEISMAN N, CHALATURNYK R J. Effect of drilling fluids on coal permeability:Impact on horizontal wellbore stability[J]. International Journal of Coal Geology, 2009, 78(3):177-191.
    [31] GOKAVARAPU S, GANTLA S, PATEL J. An experimental study of aphron based drilling fluids[J]. Saint Petersburg, 2014, 10(10):186-190.
    [32] 牛步青, 黄维安, 王洪伟, 等. 聚胺微泡沫钻井液及其作用机理[J]. 钻井液与完井液, 2016, 32(6):30-34.

    NIU Buqing, HUANG Wei'an, WANG Hongwei, et al. Polyamine micro foam drilling fluid[J]. Drilling Fluid & Completion Fluid, 2016, 32(6):30-34.
    [33] 王健, 洪伟, 关键, 等. 泡沫随钻堵漏钻井液体系[J]. 钻井液与完井液, 2015, 32(3):23-26.

    WANG Jian, HONG Wei, GUAN Jian, et al. Study and application of foam LCM drilling fluid[J]. Drilling Fluid & Completion Fluid, 2015, 32(3):23-26.
    [34] 钟汉毅, 邱正松, 黄维安, 等. 胺类页岩抑制剂特点及研究进展[J]. 石油钻探技术, 2010, 38(1):104-108.

    ZHONG Hanyi, QIU Zhengsong, HUANG Weian, et al. Development and features of amine shale inhibitors[J]. Petroleum Drilling Techniques, 2010, 38(1):104-108.
  • 加载中
计量
  • 文章访问数:  604
  • HTML全文浏览量:  180
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-08
  • 刊出日期:  2020-04-28

目录

    /

    返回文章
    返回