留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压裂液悬砂及支撑剂沉降机理实验研究

刘建坤 吴峙颖 吴春方 蒋廷学 眭世元

刘建坤, 吴峙颖, 吴春方, 蒋廷学, 眭世元. 压裂液悬砂及支撑剂沉降机理实验研究[J]. 钻井液与完井液, 2019, 36(3): 378-383. doi: 10.3969/j.issn.1001-5620.2019.03.020
引用本文: 刘建坤, 吴峙颖, 吴春方, 蒋廷学, 眭世元. 压裂液悬砂及支撑剂沉降机理实验研究[J]. 钻井液与完井液, 2019, 36(3): 378-383. doi: 10.3969/j.issn.1001-5620.2019.03.020
LIU Jiankun, WU Zhiying, WU Chunfang, JIANG Tingxue, SUI Shiyuan. Experiment Study on the Mechanisms of Sand Suspension and Settling of Proppant in Fracturing Fluids[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(3): 378-383. doi: 10.3969/j.issn.1001-5620.2019.03.020
Citation: LIU Jiankun, WU Zhiying, WU Chunfang, JIANG Tingxue, SUI Shiyuan. Experiment Study on the Mechanisms of Sand Suspension and Settling of Proppant in Fracturing Fluids[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(3): 378-383. doi: 10.3969/j.issn.1001-5620.2019.03.020

压裂液悬砂及支撑剂沉降机理实验研究

doi: 10.3969/j.issn.1001-5620.2019.03.020
基金项目: 

中国石化科技攻关项目“鄂南致密油藏两级裂缝高导流复合压裂技术研究”(P17005-5)和中国石化科技攻关项目“渭北油田浅层致密油藏水平缝体积压裂技术”(P18049-3)联合资助

详细信息
    作者简介:

    刘建坤,副研究员,1984年生,毕业于中国科学院研究生院流体力学专业,现从事储层改造工艺技术及理论方面的研究工作。电话(010)84988698;E-mail:jiankliu@163.com

  • 中图分类号: TE357.12

Experiment Study on the Mechanisms of Sand Suspension and Settling of Proppant in Fracturing Fluids

  • 摘要: 压裂液的携砂性能优劣直接影响着支撑剂在裂缝中的输送铺置效果及压后裂缝的有效导流能力。研制了“XS-I型”压裂液悬砂及支撑剂沉降物理模拟实验装置;开展了3种陶粒支撑剂(70/140目、40/70目、30/50目)在SRFP-1型压裂液中的悬砂特性研究,分析了支撑剂在携砂液中的沉降量、沉降速率以及二者随沉降时间的变化规律,得出影响压裂液悬砂性能的主控因素。实验研究表明,携砂液中支撑剂沉降分为快速沉降、缓慢沉降、稳定平衡3个阶段。压裂液黏度是影响压裂液悬砂性能的最主要因素,其次是支撑剂粒径、携砂液砂比。低黏度压裂液仅对70/140目支撑剂有一定悬浮能力(支撑剂充分沉降时间10~20 min),对40/70目和30/50目的支撑剂悬浮性能较差(支撑剂充分沉降时间仅为1.0 min~5.5min),整体悬砂能力较差。中黏度压裂液对70/140目支撑剂悬浮效果好(仅有9.9%~11.1%的支撑剂沉降),在小于15%砂比下对40/70目及30/50目支撑剂有较好的悬浮能力(支撑剂充分沉降时间80 min~240 min)。中高黏度压裂液中,大粒径(30/50目)支撑剂在高砂比(25%~30%)条件下加入,也仅有12%~13.1%的支撑剂沉降,悬砂性能优,适宜作为主加砂阶段的携砂液。研究结果丰富了压裂液悬砂能力测试方法及支撑剂优选评价手段,为压裂液、压裂施工参数的优化及支撑剂的优选,提供基础数据依据。

     

  • [1] 刘建坤,蒋廷学,万有余,等. 致密砂岩薄层压裂工艺技术研究及应用[J]. 岩性油气藏,2018,30(1):165-172.

    LIU Jiankun,JIANG Tingxue,WAN Youyu,et al. Fracturing technology for thin layer in tight sandstone reservoir and its application[J]. Llithologic Reservoirs, 2018,30(1):165-172.
    [2] 李爱芬,王士虎,王文玲. 地层砂粒在液体中的沉降规律研究[J]. 油气地质与采收率,2001,8(1):70-73.

    LI Aifen,WANG Shihu,WANG Wenling. Study on settling rule of formation sand in the liquid fluids[J]. Petroleum Geology And Recovery Efficiency,2001, 8(1):70-73.
    [3] 肖博,张士诚,郭天魁,等. 页岩气藏清水压裂悬砂效果提升实验[J]. 东北石油大学学报,2013,37(3):94-99.

    XIAO Bo,ZHANG Shicheng,GUO Tiankui,et al. Laboratory experiment on the method for improving proppant carrying capacity of slickwater fracturing in shale gas reservoirs[J]. Journal of Northeast Petroleum University,2013,37(3):94-99.
    [4] 王丽伟,程兴生,翟文,等. 压裂液黏弹性与悬浮支撑剂能力研究[J]. 油田化学,2014,31(1):38-41.

    WANG Liwei,CHENG Xingsheng,ZHAI Wen,et al. Viscoelasticity of fracturing fluid and the proppant suspending capacity[J].Oilfield Chemistry,2014, 31(1):38-41.
    [5] 何春明,才博,卢拥军,等. 瓜胶压裂液携砂微观机理研究[J]. 油田化学,2015,32(1):34-38.

    HE Chunming,CAI Bo,LU Yongjun,et al. Microscopic mechanism of proppant carrying capacity of fracturing fluid[J].Oilfield Chemistry,2015,32(1):34-38.
    [6] 黄彩贺,卢拥军,邱晓惠,等. 支撑剂单颗粒沉降速率与线性胶压裂液黏弹性关系[J]. 钻井液与完井液, 2015,32(6):72-77.

    HUANG Caihe,LU Yongjun,QIU Xiaohui,et al. Study on relationship between sedimentation rate of single proppant particle and viscoelasticity of linear colloid fracturing fluid[J].Drilling Fluid & Completion Fluid, 2015,32(6):72-77.
    [7] 陶红胜,王满学,杏毅,等. 低黏度清洁压裂液黏弹性与悬砂能力的关系[J]. 油田化学,2015,32(4):494-498.

    TAO Hongsheng,WANG Manxue,XING Yi,et al. Relationship between suspended proppant ability and viscoelasticity of clean fracturing fluid with low viscosity[J]. Oilfield Chemistry,2015,32(4):494-498.
    [8] 张林强. 支撑剂在滑溜水中沉降规律探讨[J]. 当代化工,2017,46(4):711-714.

    ZHANG Linqiang. Discussion on proppant settlement regularity in slickwater fracturing fluid[J]. Contemporary Chemical Industry,2017,46(4):711-714.
    [9] 温庆志,罗明良,李加娜,等. 压裂支撑剂在裂缝中的沉降规律[J]. 油气地质与采收率,2009,16(3):100-103.

    WEN Qingzhi,LUO Mingliang,LI Jiana,et al. Principle of proppant settlement in fracture[J]. Petroleum Geology and Recovery Efficiency,2009,16(3):100-103.
    [10] 温庆志,翟恒立,罗明良,等. 页岩气藏压裂支撑剂沉降及运移规律实验研究[J]. 油气地质与采收率, 2012,19(6):104-107.

    WEN Qingzhi,ZHAI Hengli,LUO Mingliang,et al. Study on proppant settlement and transport rule in shale gas fracturing[J]. Petroleum Geology and Recovery Efficiency,2012,19(6):104-107.
    [11] 温庆志,段晓飞,战永平,等. 支撑剂在复杂缝网中的沉降运移规律研究[J]. 西安石油大学学报(自然科学版),2016,31(1):79-84. WEN Qinzhi,DGAN Xiaofei,ZHAN Yongpin,et al. Study on settlement and migration law of proppant in complex fracture network[J]. Journal of Xi'an Shiyou University (Natural Science Edition),2016,31(1):79-84.
    [12] 梁莹,罗斌,黄霞. 水力压裂低密度支撑剂铺置规律研究及应用[J]. 钻井液与完井液,2018,35(3):110-113.

    LIANG Ying,LUO Bin,HUANG Xia. Study on distribution of low density proppants in hydraulic fracturing operations and the application thereof[J]. Drilling Fluid & Completion Fluid,2018,35(3):110-113.
  • 加载中
计量
  • 文章访问数:  830
  • HTML全文浏览量:  184
  • PDF下载量:  295
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-20
  • 刊出日期:  2019-06-30

目录

    /

    返回文章
    返回